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This paper  shows that the total  heat  loss through a closed s e m i p e r m e a b l e  envelope is equal 
to the sum of the pure ly  conductive heat  fluxes through any closed i so thermal  su r face  within 
the envelope itself.  An approx imate  method of de termining  the heat  loss  through a closed 
s e m i p e r m e a b l e  envelope of any form is descr ibed.  

We consider  a closed s e m i p e r m e a b l e  envelope of porous  mate r ia l  containing heat  sources .  Liquid 
f i l te rs  through the m e m b r a n e  under the action of a p r e s s u r e  gradient ,  which may be due to a d i f ference  in 
dynamic p r e s s u r e s  (motion of the body in a liquid or  flow of liquid over  the body) or  to a di f ference in s ta t ic  
p r e s s u r e s .  There  a re  no sources  or  sinks of liquid within the envelope. The r e s i s t ance  to f i l t ra t ion con- 
f o r m s  to the Darcy  law 

; =-aZp. 

The velocity field in the envelope is a potential  field, which follows d i rec t ly  f rom (1). 
following additional assumpt ions :  

a) 

b) 

(1) 

We make the 

c) 

A 
body was obtained in [1] and for the steady s ta te  can be wri t ten as: 

4 

dive+ V - 0 
~ 1  

Here  ~k is the mass  flux densi ty of the k-th component  of the liquid. 
compres s ib l e  liquid. Then Jk = 7kWk and (2) takes the fo rm 

the t e m p e r a t u r e s  of the f i l ter ing flow and the body mat r ix  in the steady s tate  a r e  the same  at each 
point; 

the thermophys ica l  constants  of the envelope ma te r i a I  and the liquid a r e  independent of the t e m -  
pe ra tu re ,  and those of the envelope a r e  also independent of the spat ia l  coordinates;  

the t e m p e r a t u r e  of the outer  sur face  of the enveiope is constant over  the ent i re  sur face .  

genera l  dif ferent ia l  equation for  combined conductive and convective heat  t r an s f e r  within a porous  

(2) 

We consider  a s ingle-component  in- 

div q -t-cp = 0. (2') 

This equation is the condition for  the absence  of heat  sources  and sinks within the envelope. 

We take any closed sur face  S lying ent i re ly  within the envelope i tself .  Integrat ing (2') over  the vol-  
ume V, bounded by the su r face  S, we have 

(3) 
V V 

Here  Q is the total intensity of the heat  sources  situated inside the envelope, L e., the heat  loss  of the insu-  
lated volume. 

It  was taken into account in the integration that Eq. (2') is valid only within the insulating envelope, 
whereas  the volume V over  which the integration is taken includes the whole insulated volume as well  as 
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the envelope. The insulated volume contains heat sources ,  which compensate for the steady heat loss 
through the insulation. 

We introduce a velocity potential ~ so tha tw =V(p. It is known from hydrodynamics that the velo- 
city potential is a harmonic  function [5]. We assume that in the insulated volume the motion of the liquid 
is also potential and on the inner boundary of the envelope-w =~(z  has no discontinuity. In this case we 
can assume that the velocity potential is a function ~, which is harmonic  throughout the volume bounded by 
the outer surface  of the envelope. Within the envelope ~ = - k p ,  according to (1). 

The second integral on the left side of (3) can be written, according to the f i r s t  Green formula,  as 

Here A~ = div w -- 0 f rom the continuity equation for an incompressible  liquid, and the second integral on 
the right side of (4) is zero.  Hence, 

 Odv = (5) 
V S 

In the case where the surface S is an isothermal  surface (in par t icu lar ,  the outer surface of the envelope 
is isothermal) ,  we can wri te  

,9 S 

The integral over a closed surface of the gradient of a function that ts harmonic  at all points of the volume 
within this surface  is zero by virtue of a general  p roper ty  of harmonic  functions [2]. 

From the Gauss divergence theorem 

and Eq. (3) takes the form 

V S 

(8> 

Thus, the steady heat loss of an insulated volume in the case where a cooling liquid fi l ters through 
the heat- insulat ing enveIope is equal to the purely conductive heat flux through the outer surface (in the 
general  case through any isothermal  surface enclosing the heat sources) .  

The fi l tration of liquid through the envelope affects the tempera ture  distribution, according to Eq. 
(2'), and thus affects the heat loss.  In equation (2')-q = -X~t ,  and from (2') in the general  case we obtain 
a differential equation for the tempera ture  distribution in the envelope 

- -  XAt + cp~lwvt = 0. (9) 

Here 2, is the thermal  conductivity, which includes all kinds of heat t ransfer  through the envelope matrix 
and through the gaseous medium in the pores [3, 4]. 

We now consider a very  simple specific problem. We have two pIane-paral ie l ,  infinitely long walls 
each with a thickness 6. An air  flow is directed onto the left wall, perpendicular  to it, and the air  f i l ters 
through due to the velocity head, which has the same value Pd over the whole wall surface.  The p r e s s u r e  
drop over the thickness of the left and right walls is the same (Pd); the p re s su re  in the enclosed volume is 
taken to be zero.  All the tempera tures  are  constant over the wall surfaces .  The tempera ture  notation is 
i l lustrated in Fig. 1. 

The equation for s teady-s ta te  fil tration is the Laplace p r e s s u r e  equation [5] and in the given unidi- 
menstonal case has the form 

d2P -~ O. 
dx  2 

Hence, the filtration velocity, according to the Darey law, will be a constant over  the whole wall 
thickness and will be given by u = kpd/6. For a unidimensional flow Eq. (9) can be put in the form: 

d~t dt 
dx  2 ~ dx  = 0 '  (10) 

where p = epVU/X. 
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Boundary conditions for Eq. (10). 
loeity: a) high; b) low. 

Fig. 1. 

b 

o 

Filtration ve-  

The unidimensional Eq. (10), which gives an exponential t empera ture  distribution in the wall, was ob- 
tained in [7] f rom an analysis of the heat t ransfer  between the liquid in the pores  and the matr ix and from 
the heat balance of an element of wall thickness [8]. It should be noted that investigations [7, 8] related to 
problems of aviation and rocket  technique (porous cooling of a metal wall operating at maximum tempera -  
ture). Hence, the authors of [7, 8] found the tempera ture  distribution in order  to determine the thermal  
s t r e s ses  in the wall, and did not analyze the heat fluxes. 

Solutions of Eq. (10) a re  given in [7, 8] for boundary conditions of the f i rs t  and third kind (Fig. la  and 
b), but these solutions a re  ant applicable in the given case. The fact  is that the authors of [7, 8] used 
Weinbaum and Wheeler ' s  resul ts  [6], according to which the tempera tures  of the metal and liquid on the 
surface on the coolant injection side in the case of porous cooling of a metal wall a re  significantly different, 
but these tempera tures  are  pract ical ly  the same throughout the thickness of the wall. The distance at 
which there is a finite difference between the temperatures  of the solid matr ix and liquid is very small  (of 
the order  of the pore diameter  [7]). Here we a re  not dealing with metal walls, but with heat- insulat ing 
walls, in which the thermal  conductivity of the solid matr ix is low, and there is often poor contact between 
the elements of this matrix.  Hence, in the conditions of the given problem we can assume that the t em-  
pera tures  of the fi l tering liquid and the solid body are  equal at all points without exception, including those 
on the entry side of the wall. 

In the analysis of the boundary conditions for Eq. (10) we consider  two limiting cases.  We assume 
f irs t ly,  that the filtration velocity is so great  that the whole thermal  boundary layer formed on the entry 
surface of the envelope is "sucked" into the envelope. A thermal  boundary layer  cannot be formed on the 
exit surface in the same way. In this case t h e t e m p e r a t u r e s o f t h e  boundary surfaces  will be equal to the 
corresponding tempera tures  of the surroundings (boundary conditions of the f i rs t  kind, Fig. la). These 
are  also the boundary conditions for the case of filtration due to action of a static p r e s s u r e  difference [9]. 
The second case occurs  when the permeabi l i ty  of the envelope is relat ively low and has pract ical ly  no effect 
on the formation of the boundary layer  on the wail. In this case we can assume that the heat t ransfer  coef-  
ficients are  the same as for the case of an impermeable envelope. The given tempera tures  here are  the 
tempera tures  of the surroundings,  which are  not equal to the tempera tures  on the surface (boundary condi- 
tions of third kind, Fig. lb). These a re  also the boundary conditions for all the intermediate cases if the 
heat t ransfer  coefficients can be assumed known. 

The solutions of Eq. (10) for boundary conditions of the f i r s t  kind (Fig. la) have the form 

t L = t~ -+- (t I - -  t.) exp l~x - -  1 (11 ') 
exp ~t6 - -  i ' 

tR = tl __ (t 1 __ t2 ) exp ~x - -  1 (11 ") 
exp ~5 - -  1 

The conductive heat flux, as distinct f rom the ease without fil tration, is not constant throughout the thick- 
ness of the wall 

1 ~  = ~" - ~ x  = c v ? u  (t  1 - -  t~) exp i~x 
exp ~5 - -  1 

(12) 
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Fig. 2. Temperature and components of enthalpy f lux 

over thickness of left  (a) and r ight  (b) wal ls.  

H e r e  Iq l  denotes the absolute heat  flux, s ince the sign o f q  on the x axis will be different  for  the left  and 
r ight wal ls .  

Equation (2) was obtained in [1] on the assumpt ion  that the local  der iva t ive  with r e s p e c t  to t ime  of the 
volume enthalpy concentrat ion is equal to the d ivergence  f rom the enthalpy flux. Hence,  in the s t eady- s t a t e  
unidimensional  case  the enthalpy flux, i . e . ,  in this case the combined convective and conductive heat  t r a n s -  
f e r ,  will be constant  throughout the thickness  of the wall: 

h = q + % 7 u  (t - -  t2) = const. (13) 

We a s s u m e  the enthalpy to be zero  at  t = t 2. Substituting in (13) the values obtained above for  t and q with 
due r ega rd  to sign, we obtain 

hL = t 1 - -  t~ cpTu '  (13') 
exp ~5 - -  1 

h R = cpVu eXP Ix5 (t I - -  t~). (13") 
exp ~6 - -  1 

The dis tr ibut ion of the t e m p e r a t u r e  and the components of the enthalpy flux over  the thickness  of the left 
and r ight  walls  is shown in Fig. 2. 

The total heat  flux through an envelope composed of two walls is 

Q = F[hL[ + FIhat = F (IhLI + ]hRt ). 

We de te rmine  the speci f ic  heat  loss  f rom (13): 

exp ~5 + I (14) 
IhLI + lhR[ = CpyU (t, - -  t~) exp p.5 - -  i " 

It  is easy  to see  f rom (12) that the sum of the conductive heat  fluxes [ qLl + [ qR [ through the i so thermal  
outer  o r  inner su r face  has the s ame  value. 

The obtained express ion  (14) gives the specif ic  heat  loss  through the two walls  in the p r e s e n c e  of 
f i l t ra t ion.  At the l imi t  u ~ 0, i . e . ,  in the absence  of f i l t ra t ion,  Eq. (14), a f te r  application of the L 'Hopi ta l  
ru le ,  becomes  the usual express ion  for  the s teady heat  flux through an impe rmeab le  plane wall.  

For low f i l t ra t ion veloci t ies  we mus t  r ega rd  the t e m p e r a t u r e s  of the medium t 1 and t 2 as p re sc r ibed ;  
these  t e m p e r a t u r e s  differ  f rom the t e m p e r a t u r e s  on the wall  sur face  (Fig. lb).  On the entry  su r face  of the 
left  wall we have  a2(t~-t2) = 3~(dt/dx)x=0. For  the r ight  wall ,  accordingly ,  ~ l ( t l - t~)  =-7~(dt/dx)x=~. The 
second boundary condition can be obtained f rom (13) and for the two walls  is wri t ten as:  

Determining the constants of integrat ion f rom these  conditions, we obtain the following solutions of Eq. 
(10) for  the t e m p e r a t u r e  distr ibution:  

t L = t~ + (t 1 - -  t~,) K1 + exp ~tx 
/(1+ K2 exp ~ti' (15') 

tR = t l  _ ( t l _ t , )  .K1  + ex_plzx . (15") 
1(1 + Ks exp ~to 
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Here 

For the conductive heat flux we obtain 

K1 r I andK,, CvYU = = ~ + i .  

exp ixx (16) 
Iq] = %Tu(tl--t2) K~-q-K2exp ~6" 

The total heat flux in view of (8) is given by the following expression: 

Q = lqLl~=o + "lqRl~=~ = cfiu (t 1 - -  t2) 1 + exp 8~__~__ 
K1q- K~ exp ix6" (17) 

We now consider a s tat ionary closed porous envelope bounded by plane-paral le l  walls (n faces al to-  
gether) in a flow of liquid. We assume that the external p r e s s u r e  on each face is constant and can be a s -  
sumed known. On the inner surfaces  of the walls the p res su re  is the same for all walls and is equal to 
the p re s su re  P0 in the enclosed volume. 

The exact solution of the Laplace equation Ap = 0 even for envelopes of the s implest  configuration is 
obtained in the form of infinite ser ies  and from the boundary conditions for p we cannot obtain a suitable 
expression for the velocity ~ = - k V p  for further manipulation. If we assume,  however,  that a free re turn 
flow of mass from one wall to any other is possible within the envelope, the thickness of the envelope is 
small  in comparison with its other dimensions,  then in the case of relat ively low permeabi l i ty  of the enve- 
lope we can neglect the return flow of mass from one face to the other within the envelope itself (at the 
corners) .  The filtration velocity in each face can then be assumed constant and directed normal  to the 
surface.  The p re s su re  within the envelope and the magnitude and direction of the velocity (inward or out- 
ward) in each face are  given by the following system of equations 

k w, =--~- (p~-po), 

k 
w~ = ~ (p~. - Po) ,  

. . . . . .  (18) 

k ~'= ~ (P~-P~ 

i = !  

It was assumed in the last  ease that the direction of the vector F i coincides with the direction of the external 
normal to the surface.  

Each of the walls will have the exponential t empera ture  distribution (11) or (15), depending on the fil-  
tration velocity and the associated method of assigning the boundary conditions. The total heat flux through 
the envelope, according to (8), is given by: 

Q = q* = IF~l lq,], ( 1 9 )  
i ~ l  i = l  

where Iqir for each wall is determined from (127 or (167 for any isothermal surface.  For (16) a i on the 
inner and outer surfaces of the wall on each face will be known. The x axis in each face will have the same 
direction as the filtration velocity and the origin will be on the entry side of the wall. 

This method of approximate solution can also be used for an envelope of any configuration if the com- 
ponent of the fil tration velocity paral le l  to the surface can be neglected. This simplification is justified on 
the basis of the assumption made above for an envelope bounded by planes. 

For relat ively thin hollow closed envelopes of any form through which a cooling liquid fi l ters we can 
recommend the following method of determining the heat flux: 

at we replace the envelope of the given form by a hollow polyhedron; 

b) from the prescr ibed  ~(S), p(S), and t(S) for the given envelope we determine p, a ,  and t for each 
face; 
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fine. 

c) we find f rom (18) the magnitude and direct ion of the f i l t ra t ion velocity in each face; 

d) f rom (12) or (16) we find for  each face [qi[ at x corresponding to the outer  (or other i so thermal)  
su r face  of this face; 

e) we de te rmine  f rom (19) the total  heat loss  of the insulated volume.  

This calculat ion can theore t ica l ly  be made with any degree  of accu racy  if the division is sufficiently 

o~ is the 
6 is the 
F is the 
h is the 
j is the 

is the 
Cp is the 

is the 
p is the 
q is the 
k is the 
~p is the 
w is the 
u is the 
x is the 
n is the 

N O T A T I O N  

heat  t r a n s f e r  coefficient; 
wall  thickness;  
su r face  a rea ;  
enthalpy flux density; 
mass  flux density; 
specif ic  g rav i ty  of gas  (air); 
speci f ic  heat  of gas (air) at constant  p r e s s u r e ;  
effect ive t he rma l  conductivity of porous  mater ia l ;  
s ta t ic  p r e s s u r e ;  
conductive heat  flux density; 
pe rmeab i l i t y  of porous  mater ia l ;  
f i l t ra t ion veloci ty potential;  
f i l t ra t ion velocity; 
project ion of f i l t ra t ion veloci ty  on x axis; 
coordinate  of depth in wall; 
number  of faces of hollow polyhedron.  

S u b s c r  

1 a n d 2  
L a n d R  
i 

i p t s  

denote inner and outer  su r faces ;  
denote left  (entry) and r ight  (exit) walls;  
is the number  of the face of the polyhedron.  
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