EFFECT OF AIR PERMEABILITY ON HEAT-INSULATING
PROPERTIES OF POROUS ENVELOPES
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This paper shows that the total heat loss through a closed semipermeable envelope is equal
to the sum of the purely conductive heat fluxes through any closed isothermal surface within
the envelope itself. An approximate method of determining the heat loss through a closed
semipermeable envelope of any form is described.

We consider a closed semipermeable envelope of porous material containing heat sources, Liquid
filters through the membrane under the action of a pressure gradient, which may be due to a difference in
dynamic pressures (motion of the body in a liquid or flow of liquid over the body) or to a difference in static
pressures, There are no sources or sinks of liquid within the envelope. The resistance to filtration con-
forms to the Darcy law

W = —-kvp, (1)
The velocity field in the envelope is a potential field, which follows directly from (1). We make the
following additional assumptions:

a) the temperatures of the filtering flow and the body matrix in the steady state are the same at each
point;

b) the thermophysical constants of the envelope material and the liquid are independent of the tem-
perature, and those of the envelope are also independent of the spatial coordinates;

c) the temperature of the outer surface of the envelope is constant over the entire surface.

A general differential equation for combined conductive and convective heat transfer within a porous
body was obtained in [1] and for the steady state can be written as:

- 4 R i
divg + N cpr jaVt = 0. (2)
k=1

Here Tk is the mass flux density of the k-th component of the liquid. We consider a single-component in-
compressible liquid. Then ji = YWk and (2) takes the form

divg 4cyovt = 0. @"
This equation is the coadition for the absence of heat sources and sinks within the envelope,

We take any closed surface S lying entirely within the envelope itself, Integrating (2') over the vol-
ume V, bounded by the surface S, we have

{divaay+-c v wytav = q. (3)
v v
Here Q is the total intensity of the heat sources situated inside the envelope, i.e., the heat loss of the insu~
lated volume,

It was taken into account in the integration that Eq. (2" is valid only within the insulating envelope,
whereas the volume V over which the integration is taken includes the whole insulated volume as well as
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the envelope. The insulated volume contains heat sources, which compensate for the steady heat loss
through the insulation,

We introduce a velocity potential ¢ so that w =_v5q0. It is known from hydrodynamics that the velo-
city potential is a harmonic function [5]. We assume that in the insulated volume the motion of the liquid
is also potential and on the inner boundary of the envelope W = V¢ has no discontinuity. In this case we
can assume that the velocity potential is a function @, which is harmonic throughout the volume bounded by
the outer surface of the envelope, Within the envelope ¢ = —kp, according to (1),

The second integral on the left side of {3) can be written, according to the first Green formula, as
v | @ovhav =c,y § tyg ds—c,y § tAgdV. (4)
v 5

Here Ag = div w = 0 from the continuity equation for an incompressible liquid, and the second integral on
the right side of (4) is zero. Hence,

oy [wvtav = ey § . ®)
\4 s

In the case where the surface S is an isothermal surface (in particular, the outer surface of the envelope
is isothermal), we can write

¢ 1wdS =t PypdS =o0. (6)
S S

The integral over a closed surface of the gradient of a function that is harmonic at all points of the volume
within this surface is zero by virtue of a general property of harmonic functions [2].

From the Gauss divergence theorem
[ divaav = gdS (7
v 5
and Eq. (3) takes the form
gﬁis =Q. (8)

Thus, the steady heat loss of an insulated volume in the case where a cooling liquid filters through
the heat-insulating envelope is equal to the purely conductive heat flux through the outer surface (in the
general case through any isothermal surface enclosing the heat sources).

The filtration of liquid through the envelope affects the temperature distribution, according to Eq.
(2", and thus affects the heat loss, In equation (2" q = —AVt, and from (2" in the general case we obtain
a differential equation for the temperature distribution in the envelope

— M + e yoyt = 0. 9

Here A is the thermal conductivity, which includes all kinds of heat transfer through the envelope matrix
and through the gaseous medium in the pores [3, 4].

We now consider a very simple specific problem, We have two plane-parallel, infinitely long walls
each with a thickness 6, An air flow is directed onto the left wall, perpendicular to it, and the air filters
through due to the velocity head, which has the same value pg over the whole wall surface. The pressure
drop over the thickness of the left and right walls is the same (pg); the pressure in the enclosed volume is
taken to be zero, All the temperatures are constant over the wall surfaces, The temperature notation is
illustrated in Fig. 1.

The equation for steady-state filtration is the Laplace pressure equation [5] and in the given unidi-
mensional case has the form

d’p

dx?®

Hence, the filtration velocity, according to the Darcy law, will be a constant over the whole wall
thickness and will be given by u = kpg/6. For a unidimensional flow Eq. (9) can be put in the form:

o

— =,
dx? # dx (10)

where y = cpW/A.
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Fig. 1. Boundary conditions for Eq. (10). Filtration ve-
locity: a) high; b) low.

The unidimensional Eq. (10), which gives an exponential temperature distribution in the wall, was ob-
tained in [7] from an analysis of the heat transfer between the liquid in the pores and the matrix and from
the heat balance of an element of wall thickness [8]. It should be noted that investigations [7, 8] related to
problems of aviation and rocket technique (porous cooling of a metal wall operating at maximum tempera-
ture), Hence, the authors of [7, 8] found the temperature distribution in order to determine the thermal
stresses in the wall, and did not analyze the heat fluxes,

Solutions of Eq, (10) are given in {7, 8] for boundary conditions of the first and third kind (Fig. la and
b), but these solutions are not applicable in the given case, The fact is that the authors of [7, 8] used
Weinbaum and Wheeler's results [6], according to which the temperatures of the metal and liquid on the
surface on the coolant injection side in the case of porous cooling of a metal wall are significantly different,
but these temperatures are practically the same throughout the thickness of the wall, The distance at
which there is a finite difference between the temperatures of the solid matrix and liquid is very small (of
the order of the pore diameter [7]). Here we are not dealing with metal walls, but with heat~insulating
walls, in which the thermal conductivity of the solid matrix is low, and there is often poor contact between
the elements of this matrix. Hence, in the conditions of the given problem we can assume that the tem-
peratures of the filtering liquid and the solid body are equal at all points without exception, including those
on the entry side of the wall,

In the analysis of the bouandary conditionsfor Eq. (10) we consider two limiting cases., We assume
firstly, that the filtration velocity is so great that the whole thermal boundary layer formed on the entry
surface of the envelope is "sucked" into the envelope, A thermal boundary layer cannot be formed on the
exit surface in the same way. In this case thetemperaturesofthe boundary surfaces will be equal to the
corresponding temperatures of the surroundings (boundary conditions of the first kind, Fig. 1a). These
are also the boundary conditions for the case of filtration due to action of a static pressure difference [9].
The second case occurs when the permeability of the envelope is relatively low and has practically no effect
on the formation of the boundary layer on the wall, In this case we can assume that the heat transfer coef-
ficients are the same as for the case of an impermeable envelope, The given temperatures here are the
temperatures of the surroundings, which are not equal to the temperatures on the surface (boundary condi-
tions of third kind, Fig. 1b). These are also the boundary conditions for all the intermediate cases if the
heat transfer coefficients can be assumed known,

The solutions of Eq. (10) for boundary conditions of the first kind (Fig. 1a) have the form

expux —1
bt o=t (t, — 1, -, a1
L=h+t—1) xppd— 1

exppx — 1
fh =10 — () — ) ————— . 1
R 1 12 2) exppu‘i——l ( )

The conductive heat flux, as distinct from the case without filtration, is not constant throughout the thick-
ness of the wall

exp px 12)

- dt
= |—\=c,yu(t, —1, .
9 | dx\ ol —t) B
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Fig. 2. Temperature and components of enthalpy flux
over thickness of left (a) and right (b) walls.

Here [q | denotes the absolute heat flux, since the sign of ¢ on the x axis will be different for the left and
right walls,

Equation (2) was obtained in [1] on the assumption that the local derivative with respect to time of the
volume enthalpy concentration is equal to the divergence from the enthalpy flux, Hence, in the steady-state
unidimensional case the enthalpy flux, i.e,, in this case the combined convective and conductive heat trans-
fer, will be constant throughout the thickness of the wall:

h =g+ cpyu(t —t) = const. (13)

We assume the enthalpy to be zero att =,. Substituting in (13) the values obtained above for t and q with
due regard to sign, we obtain

t, —1t,

By =— —2 2 ¢y, (13"
L exppd — 1 Y
b, = CoV4 EXP D t, —1). (13m)
expud —1

The distribution of the temperature and the components of the enthalpy flux over the thickness of the left
and right walls is shown in Fig, 2.

The total heat flux through an envelope composed of two walls is
Q = Fihy| + Fihgl = F (lhy| -+ |hg).
We determine the specific heat loss from (13):

expud -+ 1

. 14
exppud — 1 (14)

| + hgl = cpyu (f, — 1)
It is easy to see from (12) that the sum of the conductive heat fluxes |q1,| +Igr| through the isothermal
outer or inner surface has the same value,

The obtained expression (14) gives the specific heat loss through the two walls in the presence of
filtration, At the limitu — 0, i.e., in the absence of filtration, Eq, (14), after application of the L'Hopital
rule, becomes the usual expression for the steady heat flux through an impermeable plane wall.

For low filtration velocities we must regard the temperatures of the medium t; and t, as prescribed;
these temperatures differ from the temperatures on the wall surface (Fig, 1b). On the entry surface of the
left wall we have az(t;—tz) = ?\(dt/dx)xzo. For the right wall, accordingly, ai(t1—ti) =—M\dt/dx)x_y. The
second boundary condition can be obtained from (13) and for the two walls is written as:

oy (b — 1) — o (fy— 1) = cpyu (t; —1y).

Determining the constants of integration from these conditions, we obtain the following solutions of Eq.
(10} for the temperature distribution;

Ky -+ exppx

b=ty (f —1 . '

L 2 (1 2) Kl‘ KZEpr.a (15)
K, 4 exppx

tp=t, —(f,—1,) —LT Z20d>

R 1 (1 2)Kl | ngpr,(‘S (15!1)
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Here

coyu cyu
K, = il — landK, = i 1.
oy o,
For the conductive heat flux we obtain
eXp px (16)
V= vu(t, —1t,) ————-.
lql p‘V (1 2) K1+ Kzexp ll«6
The total heat flux in view of (8) is given by the following expression:
1 4-exp 6&*

Q = |g)u0 + 19l e=s = Cp¥i (h — L) (17)

Ki+ Kyexppd’

We now consider a stationary closed porous envelope bounded by plane-parallel walls (n faces alto-
gether) in a flow of liquid, We assume that the external pressure on each face is constant and can be as-
sumed known. On the inner surfaces of the walls the pressure is the same for all walls and is equal to
the pressure p; in the enclosed volume,

The exact solution of the Laplace equation Ap =0 even for envelopes of the simplest configuration is
obtained in the form of infinite series and from the boundary conditions for p we cannot obtain a suitable
expression for the velocity W = —-k—ﬁp for further manipulation. If we assume, however, that a free return
flow of mass from one wall to any other is possible within the envelope, the thickness of the envelope is
small in comparison with its other dimensions, then in the case of relatively low permeability of the enve-
lope we can neglect the return flow of mass from one face to the other within the envelope itself (at the
corners), The filtration velocity in each face can then be assumed constant and directed normal to the
surface. The pressure within the envelope and the magnitude and direction of the velocity (inward or out-
ward) in each face are given by the following system of equations

k
Wy = _6— Py — Do)
L

wz= 62 (p‘z“'po),
(18)
k
Wp= 6n (pn pO)y
SF; v, =0.

{=a]

It was assumed in the last case that the direction of the vector —15-1 coincides with the direction of the external
normal to the surface. '

Each of the walls will have the exponential temperature distribution (11) or (15), depending on the fil-
tration velocity and the associated method of assigning the boundary conditions. The total heat flux through
the envelope, according to (8), is given by:

- -

Q=Y F 9= N IFilal, (19)
i=]

VS

L

I

1

where lqi[ for each wall is determined from (12) or (16) for any isothermal surface, For (16) oj on the
inner and outer surfaces of the wall on each face will be known. The x axis in each face will have the same
direction as the filtration velocity and the origin will be on the entry side of the wall,

This method of approximate solution can also be used for an envelope of any configuration if the com-
ponent of the filtration velocity parallel to the surface can be neglected, This simplification is justified on
the basis of the assumption made above for an envelope bounded by planes,

For relatively thin hollow closed envelopes of any form through which a cooling liquid filters we can
recommend the following method of determining the heat flux:

a) we replace the envelope of the given form by a hollow polyhedron;

b) from the prescribed «(S), p(S), and t(S) for the given envelope we determine p, o, and t for each
face;
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c) we find from (18) the magnitude and direction of the filtration velocity in each face;

d) from (12) or (16) we find for each face |qil at x corresponding to the outer (or other isothermal)

surface of this face;

e) we determine from (19) the total heat loss of the insulated volume,

This calculation can theoretically be made with any degree of accuracy if the division is sufficiently

NOTATION

is the heat transfer coefficient;

is the wall thickness;

is the surface area;

is the enthalpy flux density;

is the mass flux density;

is the specific gravity of gas (air);

is the specific heat of gas (air) at constant pressurs;
is the effective thermal conductivity of porous material;
is the static pressure;

is the conductive heat flux density;

is the permeability of porous material;

is the filtration velocity potential;

is the filtration velocity;

is the projection of filtration velocity on x axis;

is the coordinate of depth in wall;

is the number of faces of hollow polyhedron.

Subscripts

1 and 2 denote inner and outer surfaces;
Land R denote left (entry) and right (exit) walls;

1

DO =i
. .

NS

w0 -3 N
P

is the number of the face of the polyhedron.
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